

N3Q1

- a) Quando o visor mostra 804, o número de controle é 10+8-0+4=22.
- b) Quando o visor mostra 690, o número de controle é 10+6-9+0=7. Mostramos na tabela abaixo todas as possibilidades de giro de uma unidade dos discos **C** e **U**:

	С	D	J	controle
Posição inicial	6	9	0	7
C gira para 7	7	0	0	17
C gira para 5	5	8	0	7
U gira para 1	6	0	1	17
U gira para 9	6	8	9	17

Como o número de controle não mudou, vemos que o disco **C** foi girado para 5 e o número no visor passou a ser 580.

c) Vamos analisar o que acontece quando giramos o disco ${\bf C}$ para cima. Se $C \neq 9$, ele passará a mostrar C' = C + 1; se C = 9, ele passará a mostrar C' = 0. O mesmo acontecerá com o disco ${\bf D}$; se $D \neq 9$ então ele passará a mostrar D' = D + 1 e, se D = 9, ele passará a mostrar D' = 0. Nesse processo, o disco ${\bf U}$ continuará a mostrar ${\bf U}$, ou seja, o novo número de controle será 10 + C' - D' + U. A diferença entre o novo número de controle e o original é então

$$10 + C' - D' + U - (10 + C - D + U) = (C' - C) - (D' - D)$$
.

Observamos agora que C'-C só assume os valores (C+1)-C=1 e 0-9=-9, bem como D-D'; desse modo, os possíveis valores de (C'-C)-(D'-D) são 1-1=-9-(-9)=0, 1-(-9)=10 e -9-1=-10, todos múltiplos de 10. Logo o algarismo das unidades dos números de controle original e novo é o mesmo.

Raciocínio idêntico mostra que o algarismo das unidades do número de controle não muda também nas outras possibilidades de giro dos discos ${\bf C}$ e ${\bf U}$.

d) Quando o visor mostra 978, o número de controle é 10+9-7+8=20; o item anterior mostra que, qualquer que seja o giro dos discos **C** e **U**, o algarismo das unidades do número de controle continuará a ser 0. Como o número de controle de 555 é 10+5-5+5=15, não é possível obter 555 a partir de 978.

<u>N3Q2</u>

- a) De acordo com a definição, temos $2 \square 3 = (2 + 3) + 1 = 6$.
- b) Temos

$$0 \square 3 = 0 \square (1 \square 1) = (0 \square 1) \square (0 \square 1) = 3 \square 3 = (3 + 3) + 1 = 7$$

onde observamos que 0□1=3, de acordo com a conta de Hipácia no quadro negro.

c) Primeiro calculamos

$$2 \square 3 = (0 \square 1) \square 3 = (0 \square 3) \square (1 \square 3) = 7 \square (1 \square 3)$$

Para continuar, é necessário calcular 1□3, o que fazemos a seguir:

$$1 \Box 3 = (0 \Box 0) \Box 3 = (0 \Box 3) \Box (0 \Box 3) = 7 \Box 7 = (7 + 7) + 1 = 15$$

Finalmente, temos

$$2 \square 3 = 7 \square (1 \square 3) = 7 \square 15 = (7 + 15) + 1 = 23$$
.

Observação: O(a) leitor(a) com algum conhecimento de indução matemática pode mostrar que, em geral, $m \square n = 2(m + n + mn) + 1$.

<u>N3Q3</u>

a) No tabuleiro dado aparecem somas ímpares na primeira e segunda linhas, primeira e segunda colunas e na diagonal principal. Desse modo, a nota desse tabuleiro é 5.

b) Abaixo temos 4 tabuleiros com nota 8

1	1	1	1	0	0	0	0	1	0	1	0
1	1	1	0	1	0	0	1	0	1	1	1
1	1	1	0	0	1	1	0	0	0	1	0

É possível mostrar que estes são os únicos tabuleiros com nota 8; deixamos isso como exercício.

- c) Ao trocar o número de um dos cantos do tabuleiro, soma-se 1 (caso a troca tenha sido de 0 para 1) ou subtrai-se 1 (caso a troca tenha sido de 1 para 0) aos totais de da linha, da coluna e da diagonal que se encontram nesse canto. Assim, das oito somas (três linhas, três colunas e duas diagonais), três trocam de paridade e as outras não mudam. Observamos agora que:
 - se essas três somas são ímpares, após a troca a nota diminuirá de 3;
 - se duas dessas somas são pares e uma é impar, após a troca a nota aumentará de 1;
 - se duas dessas somas são ímpares e uma é par, após a troca a nota diminuirá de 1;
 - se essas três somas são pares, após a troca a nota aumentará de 3.

Em qualquer caso, vemos que se a nota original do tabuleiro é par (ou ímpar), ela se tornará ímpar (ou par), pois aumentará ou diminuirá de 1 ou 3.

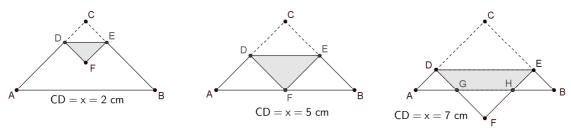
Alternativamente, podemos concluir do item anterior que se um tabuleiro tem nota par (ou ímpar), ao trocar o algarismo da casa do canto superior direito teremos um tabuleiro de nota ímpar (ou par). Isso mostra que a cada tabuleiro de nota par corresponde um de nota ímpar e vice-versa, ou seja, o número de tabuleiros de nota ímpar (ou par) é a metade do número total de tabuleiros, que é

$$\frac{2^9}{2} = 2^8$$
.

N3Q4

Para simplificar a exposição, vamos indicar a área de uma figura colocando seu nome entre parêntesis; por exemplo, (*ABC*) denota a área do triângulo *ABC* (em cm²).

a) A figura abaixo ilustra as situações x=2, x=5 e x=7; nelas F representa a posição de C após a dobra.



Como o triângulo ABC é retângulo em C e a dobra é paralela ao lado AB, segue que CDFE é um quadrado de lado CD = x cm; a área do triângulo DEF é metade da área

do quadrado *CDFE*. Temos (*CDFE*) =
$$x^2$$
 e então (*DEF*) = $\frac{x^2}{2}$.

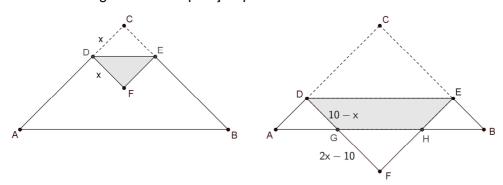
Para x=2 o triângulo *DEF* representa a região de sobreposição, logo,

$$f(2) = \frac{2^2}{2} = 2$$
; analogamente, temos $f(5) = \frac{25}{2}$.

No caso x=7, a área de sobreposição, representada pelo trapézio DEHG, é igual a (DEF)-(GHF). O triângulo ADG é isósceles com AD=DG=3 cm; como

$$DF = 7 \text{ temos } GF = 4 \cdot \text{Logo}(DEHG) = (DEF) - (GHF) = \frac{7^2}{2} - \frac{4^2}{2} = \frac{33}{2} \text{ cm}^2$$
, ou seja, $f(7) = \frac{33}{2}$.

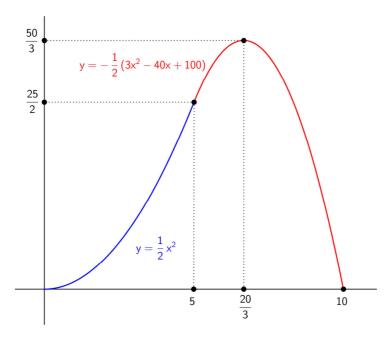
b) A figura abaixo, à esquerda, ilustra a região de sobreposição para $0 < x \le 5$; à direita temos a região de sobreposição para 5 < x < 10.



No primeiro caso, *CDFE* é um quadrado de lado x e a área de *DEF* é metade da área desse quadrado, ou seja, $f(x) = \frac{x^2}{2}$. No segundo caso, o triângulo *ADG* é

isósceles com
$$AD = DG = 10 - x$$
; logo $GF = DF - DG = x - (10 - x) = 2x - 10$ e temos $f(x) = (DEHG) = (DEF) - (GHF) = \frac{x^2}{2} - \frac{(2x - 10)^2}{2} = \frac{1}{2}(-3x^2 + 40x - 100)$.
Pode-se também calcular $(DEGH) = (ABC) - (DEC) - (ADG) - (EBH) = (ABC) - (DEC) - 2(ADG)$; deixamos esse cálculo para o(a) leitor(a).

c) O gráfico de f aparece abaixo.



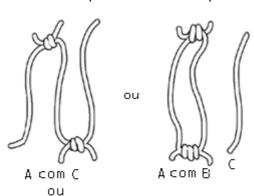
d) Observamos primeiro que $-\frac{1}{2}(3x^2 - 40x + 100) = -\frac{1}{2}(3x - 10)(x - 10)$; essa fatoração pode ser obtida a partir das raízes de $3x^2 - 40x + 100$, que são $\frac{10}{3}$ e 10.

Quando $0 < x \le 5$ o maior valor de $f(x) = \frac{1}{2}x^2$ é $f(5) = \frac{25}{2}$. Por outro lado, quando 5 < x < 10 o maior valor de $f(x) = -\frac{1}{2}(3x - 10)(x - 10)$ é atingido no vértice da parábola, cuja abscissa é o ponto médio das raízes, ou seja, é $\frac{1}{2}(\frac{10}{3} + 10) = \frac{20}{3}$; temos $f(\frac{20}{3}) = \frac{50}{3}$. Como $f(5) = \frac{25}{2} < \frac{50}{3} = f(\frac{20}{3})$, o maior valor possível da área de sobreposição é $\frac{50}{3}$.

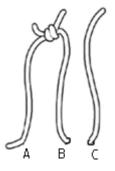
B com C

N3Q5

 a) 1^a solução: Após amarrar dois barbantes do lado de cima da mão, temos a situação da figura à direita. Os possíveis resultados após amarrar duas pontas do outro lado da mão são



mostrados na figura à esquerda. Temos 2 possibilidades para o caso da esquerda (barbantes unidos em um único fio) e 1



possibilidade para o caso da direita, num total de 2+1=3. Assim, a probabilidade

de formar um único fio é $\frac{2}{3}$

\\\\\Podemos expressar esse

raciocínio dizendo que, uma vez dado um nó do lado de cima da mão, a ponta em baixo correspondente à ponta solta em cima tem 3 escolhas: ficar sozinha ou unirse a uma das outras duas. Em 2 dessas escolhas (unir-se a uma das outras duas)

é formado um único fio, ou seja, a probabilidade de formar um único fio é $\frac{2}{3}$.

 2^a solução: Vamos supor que as pontas dos barbantes do lado de cima da mão sejam rotuladas com as letras A, B, C e as pontas correspondentes do outro lado com A', B', C'. Para dar um nó em cima da mão, basta escolher a ponta que vai ficar solta (3 possibilidades) e amarrar as outras duas. O mesmo ocorre do outro lado da mão, e segue que temos $3\times3=9$ possibilidades para dar nós de ambos os lados da mão. Haverá um barbante isolado quando a ponta solta do lado de baixo for a ponta correspondente à ponta solta do lado de cima; isso ocorre uma vez a cada escolha de como amarrar os barbantes na parte de cima, num total de 3 casos. Logo, a probabilidade de que os barbantes não estejam unidos em um único fio é $1-\frac{1}{3}=\frac{2}{3}$.

b) 1ª solução: Como na 1ª solução do item (a), após dar dois nós de um dos lados da mão, a outra ponta do barbante não usado tem 5 escolhas, sendo que em apenas 1 delas ele ficará solto; logo, a probabilidade de que um dos pedaços fique isolado é 1/5.

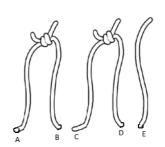
2ª solução: Como na 2ª solução do item (a), vamos supor que as pontas dos barbantes do lado de cima da mão sejam rotuladas com as letras A, B, C, D e E e as pontas correspondentes do outro lado com A', B', C', D' e E'. Para dar os nós em cima da mão, basta escolher a ponta que vai ficar solta (5 possibilidades) e amarrar as outras quatro duas a duas (3 possibilidades; por exemplo, se A ficou solta, as possibilidades são (BC,DE), (BD,CE) e (BE,CD)). O mesmo ocorre do outro lado da mão, e segue que temos $(5\times3)^2$ possibilidades para dar nós de ambos os lados da mão. Haverá um barbante isolado quando a ponta solta do lado de baixo for a ponta correspondente à ponta solta do lado de cima; isso ocorre uma vez a cada escolha de como amarrar os barbantes na parte de cima, num total de $(5\times3)\times3$ (5×3) escolhas da ponta solta na parte de baixo, uma para cada possibilidade de dar nós na parte de cima, e 3 escolhas de como amarrar as outras quatro pontas). Logo, a probabilidade de que um dos pedaços originais de

barbante fique separado dos demais é $\frac{(5\times3)\times3}{(5\times3)^2} = \frac{1}{5}$.

1ª solução: Como na 1ª solução do item (b), após dar dois nós de um dos lados da mão, a outra ponta do barbante não usado tem 5 escolhas, a saber, ficar solta ou unir-se a uma das outras 4 pontas; para formar um único fio, ela deve ser unida a outra ponta, o que acontece com probabilidade $\frac{4}{5}$. Isso feito, a outra ponta do fio ao qual a ponta solta foi unida tem 3 possibilidades, a saber, ficar solta ou unir-se a uma das outras 2 pontas; para formar um único fio, ela deve ser unida a outra ponta, o que acontece com probabilidade $\frac{2}{3}$. Logo, a probabilidade de os

barbantes formarem um único fio é $\frac{4}{5} \times \frac{2}{3} = \frac{8}{15}$

Para exemplificar esse raciocínio, observamos na figura ao lado que a ponta E pode ser unida às pontas A, B, C e D. Se, por exemplo, ela for unida à ponta A, para que os barbantes formem um único fio é necessário que a ponta B seja unida a uma das pontas C ou D.



2ª solução: Supomos aqui também que as pontas dos barbantes do lado de cima da mão sejam rotuladas com as letras A, B, C, D e E e as pontas correspondentes do outro lado com A', B', C', D' e E'. Já vimos que o número de maneiras de dar dois nós de ambos os lados da mão é $(5\times3)^2$. Para cada maneira de amarrar os barbantes na parte de cima (5×3 possibilidades), haverá um fio único quando a ponta da parte de baixo correspondente à ponta solta em cima for unida a uma das outras quatro (4 possiblidades) e, depois disso, a outra ponta (em baixo) do barbante de três fios assim formado for unida a uma das restantes (2 possibilidades). Logo a probabilidade de os barbantes formarem um único fio é

$$\frac{(5\times3)\times4\times2}{(5\times3)^2} = \frac{8}{15}.$$

N3Q6

a) Seja n a distância a ser percorrida por Adonis e Basílio. O algoritmo da divisão de Euclides nos permite escrever n=8a+r=7b+s onde $0 \le r \le 7$ e $0 \le s \le 6$; segue que A(n)=a+r e B(n)=b+s. Por exemplo, $14=8\times 1+6=7\times 2+0$, donde A(14)=1+6=7 e B(14)=2+0=2. O restante da tabela pode ser preenchido analogamente.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A(n)																
B(n)	1	2	3	4	5	6	1	2	3	4	5	6	7	2	3	4

b) Para achar um desses números, basta fazer uma tabela como a do item anterior para valores de *n* entre 200 e 240.

A(n) 25 26 27 28 29 30 31 32 26 27 28 29 30 31 B(n) 32 33 34 29 30 31 32 33 34 35 30 31 32 33	n	200	201	202	203	204	205	206	207	208	209	210	211	212	213
B(n) 32 33 34 29 30 31 32 33 34 35 30 31 32 33	<i>A</i> (<i>n</i>)	25	26	27	28	29	30	31	32	26	27	28	29	30	31
	B(n)	32	33	34	29	30	31	32	33	34	35	30	31	32	33

n	214	215	216	217	218	219	220	221	222	223	224	225	226	227
A(n)	32	33	27	28	29	30	31	32	33	34	28	29	30	31
B(n)	34	35	36	31	32	33	34	35	36	37	32	33	34	35

n	228	229	230	231	232	233	234	235	236	237	238	239	240
A(n)	32	33	34	35	29	30	31	32	33	34	35	36	30
B(n)	36	37	38	33	34	35	36	37	38	39	34	35	36

Essa tabela mostra que 231, 238 e 239 são os valores de n entre 200 e 240 tais que A(n) > B(n). Observamos que a feitura dessa tabela não é tão trabalhosa como parece, pois o padrão dos valores de A(n) e B(n) é claro; por exemplo, basta calcular A(n) para os múltiplos de 8 e a linha correspondente a A(n) é preenchida como segue:

n	8 <i>k</i>	8 <i>k</i> +1	8 <i>k</i> + 2	8k + 3	8k + 4	8 <i>k</i> + 5	8 <i>k</i> + 6	8 <i>k</i> + 7	8(<i>k</i> + 1)
A(n)	k	k+1	k+2	k+3	k + 4	k+5	k+6	k+7	k+1

Observação análoga vale para a linha correspondente a B(n).

c) Das expressões n=8a+r=7b+s temos $A(n)=a+r=\frac{n-r}{8}+r=\frac{n+7r}{8}$ e $B(n)=b+s=\frac{n-s}{7}+s=\frac{n+6s}{7}$. Desse modo, A(n)=B(n) se escreve como $\frac{n+7r}{8}=\frac{n+6s}{7}$; simplificando essa expressão chegamos a n=49r-48s. O maior valor possível para 49r-48s é obtido colocando r=7 e s=0, ou seja, o número procurado é $d=49\times 7=343$.

Fica como exercício para o(a) leitor(a) mostrar que A(n) < B(n) para n > 343.