

QUESTÃO 1 ALTERNATIVA B

A quantidade de água que Daniela gastava por semana (isto é, em 7 dias) em cada atividade era:

- *lavar roupa*: $7 \times 150 = 1050$ litros;
- banho de 15 minutos: 7 × 90 = 630 litros;
- lavar o carro com mangueira: 1×100 = 100 litros.

Assim, ela gastava 1050 + 630 + 100 = 1780 litros por semana. Com a economia, Daniela passou a gastar semanalmente em cada atividade:

- lavar roupa no tanque: $3 \times 150 = 450$ litros;
- banho de 5 minutos: $7 \times \frac{90}{3} = 7 \times 30 = 210$ litros;
- lavar o carro com balde: 1×10 = 10 litros,

ou seja, um total de 450 + 210 + 10 = 670 litros. Portanto, ela passou a economizar por semana 1780 - 670 = 1110 litros de água.

Podemos também pensar diretamente na economia semanal da Daniela:

- 4 lavagens de roupa: $4 \times 150 = 600$ litros;
- $\frac{2}{3}$ banho por dia: $7 \times \frac{2}{3} \times 90 = 420$ litros;
- substituir a mangueira pelo balde: 100 10 = 90,

o que nos dá o total de 600 + 420 + 90 = 1110 litros.

QUESTÃO 2 ALTERNATIVA C

Seja x o comprimento do pé do Maurício. Então $39 < \frac{5x+28}{4} \le 40$, e segue que $156 < 5x+28 \le 160$. Logo $128 < 5x \le 132$, ou seja, $25,6 < x \le 26,4$. A única alternativa que satisfaz estas desigualdades é a alternativa C.

QUESTÃO 3 ALTERNATIVA A

Escrevendo 24 como produto de inteiros positivos de todas as maneiras possíveis, podemos investigar todas as possibilidades para a e b em $a*b=(a+1)\times(b-1)=24$ e testá-las em $b*a=(b+1)\times(a-1)=30$ para achar os possíveis valores de a e b. Vamos lá:

24 =	а	b	$(b+1)\times(a-1)$
1×24	0	25	não considerar pois $a>0$
2×12	1	13	0
3×8	2	9	10
4×6	3	7	16
6×4	5	5	25
8×3	7	4	30
12×2	11	3	33
24×1	23	2	46

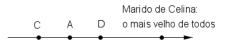
Logo a = 7 e b = 4, donde a + b = 11.

De modo mais algébrico, podemos resolver este problema como segue. Temos a*b=(a+1)(b-1)=ab-a+b-1=24 e b*a=(b+1)(a-1)=ab+a-b-1=30. Somando estas duas expressões, obtemos 2ab-2=54 e segue que ab=28. De modo análogo ao anterior, geramos as possibilidades (1,28), (2,14), (4,7), (7,4), (14,2) e (28,1) para (a,b) e verificamos que apenas a=7 e b=4 satisfazem a*b=24 e b*a=30.

Alternativamente, notamos que subtraindo ab-a+b-1=24 de ab+a-b-1=30 obtemos 2a-2b=6, ou seja, a-b=3. Logo a=b+3 e, substituindo em ab=28 temos $b^2-3b-28=0$. Esta equação tem raízes b=4 e b=-7; como só nos interessa a raiz positiva, temos b=4 e então a=7.

QUESTÃO 4 ALTERNATIVA C

Na figura ao lado, A representa a idade de Arnaldo, C a de Celina e D a de Dalila; a flecha indica o sentido de idade crescente. A ordem das letras C, A e D indica que Arnaldo é mais velho que Celina e mais novo que Dalila. Logo o esposo de Celina é Beto, que é também o mais velho de todos.



QUESTÃO 5 ALTERNATIVA D

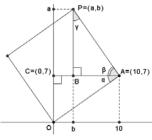
A área de uma circunferência é proporcional ao quadrado do diâmetro. Como uma pizza grande tem diâmetro duas vezes maior que o de uma pequena, se a área de uma pizza pequena é A então a área de uma grande é

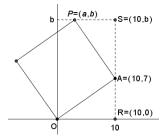
4A. Três fatias de uma pizza grande têm área $\frac{3}{16} \times 4A = \frac{3}{4}A$, ou seja, correspondem a $\frac{3}{4}$ de uma pizza pequena.

Pode-se também resolver esta questão usando a fórmula da área de uma circunferência. Seja r o raio da pizza pequena; então sua área é πr^2 . O raio da pizza grande é 2r e sua área é $\pi (2r)^2 = 4\pi r^2$. Três fatias da pizza grande têm área $\frac{3}{16} \left(4\pi r^2 \right) = \frac{3}{4} \pi r^2$, ou seja, $\frac{3}{4}$ da área de uma pizza pequena.

QUESTÃO 6 ALTERNATIVA A

Sejam O a origem, A o ponto (10,7) e P o ponto (a,b). Traçando por A uma paralela ao eixo x e por P uma paralela ao eixo y, determinamos os pontos B e C como na figura. Como A = (10,7), temos AC = 10 e OC = 3; além disso, OA = AP. Denotamos por α , β e γ as medidas dos ângulos destacados. Observamos agora que, como o ângulo $O\widehat{A}P$ é reto, temos $\alpha + \beta = 90^\circ$. Por outro lado, como o





triângulo *ABP* é retângulo em *B*, temos $\beta + \gamma = 90^{\circ}$. Segue que $\alpha = \gamma$ e então os triângulos *OAC* e *ABP* são

congruentes, pois são triângulos retângulos com um ângulo (além do ângulo reto) comum e hipotenusas OA e AP iguais. Concluímos que AB = 7 e BP = 10, donde a = 7 + 10 = 17 e b = 10 - 7 = 3; logo a + b = 3 + 17 = 20.

Outra solução usa a figura à esquerda. Os triângulos ORA e ASP são congruentes, por argumentos semelhantes aos da primeira solução; segue que AS = OR = 10 e PS = AR = 7. Logo a = 3 e b = 17, donde a + b = 20.

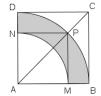
QUESTÃO 7 ALTERNATIVA C

Notamos que $5353 = 53 \times 101$ e $2828 = 28 \times 101$. Podemos então fazer a conta rapidamente, usando a identidade $a^2 - b^2 = (a + b)(a - b)$:

$$5353^{2} - 2828^{2} = 53^{2} \times 101^{2} + 28^{2} \times 101^{2} = \left(53^{2} - 28^{2}\right) \times 101^{2} = \left(53 - 28\right) \times (53 + 28) \times 101^{2}$$
$$= 5^{2} \times 9^{2} \times 101^{2} = 45^{2} \times 101^{2} = \left(45 \times 101\right)^{2} = 4545^{2}.$$

QUESTÃO 8 ALTERNATIVA E

Seja ℓ o lado do quadrado ABCD. Como \widehat{BD} é um arco de circunferência com centro A, segue que AP é um raio da circunferência, e portanto $AP = AB = \ell$. Por outro lado, AP é a diagonal do quadrado AMPN; o teorema de Pitágoras nos diz então que $\ell^2 = AM^2 + MP^2$. Como AM = MP, segue que $\ell^2 = 2AM^2$, donde $AM^2 = \frac{\ell^2}{2}$. A área sombreada é então



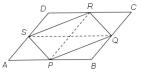
$$\frac{1}{4}\pi AB^2 - \frac{1}{4}\pi AM^2 = \frac{1}{4}\bigg(\pi\ell^2 - \pi\frac{\ell^2}{2}\bigg) = \frac{1}{8}\pi\ell^2$$

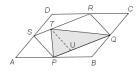
e a razão entre esta área e a área do quadrado é

$$\frac{\frac{1}{8}\pi\ell^2}{\ell^2} = \frac{\pi}{8}.$$

QUESTÃO 9 ALTERNATIVA A

Por um momento, esquecemos o triângulo PQT e traçamos os segmentos PR e QS, como na figura ao lado. É imediato que todos os triângulos que aparecem são congruentes; segue que PQRS é um paralelogramo e sua área é metade da área de ABCD, ou seja, $20~\rm cm^2$.



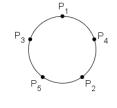


Voltamos agora para a figura do enunciado e traçamos uma paralela *TU* ao segmento *PS*. Os triângulos *PST* e *UTP* são congruentes, bem como os triângulos *UTQ* e *RQT*. Como o triângulo *PQT* é a união dos triângulos *UTP* e *UTQ*, segue que sua área é metade da área do quadrilátero *PQRS*, ou seja, 10 cm².

QUESTÃO 10 ALTERNATIVA D

Vamos denotar o comprimento da circunferência por ℓ , e chamar a formiguinha mais rápida de formiguinha A e a outra de formiguinha B; suas velocidades serão denotadas por $v_{_{\!A}}$ e

 v_B , respectivamente. Como A dá 9 voltas enquanto B dá 6, temos $\frac{v_A}{v_B} = \frac{9}{6} = \frac{3}{2}$; isto mostra



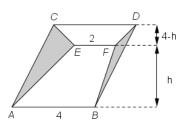
que se A anda uma distância d_A enquanto B anda uma distância d_B , então $\frac{d_A}{d_B} = \frac{3}{2}$.

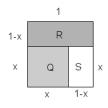
Como as formiguinhas andam em sentidos contrários, elas vão se encontrar uma primeira vez em um ponto que chamaremos P_1 . Sejam d_A e d_B as distâncias percorridas pelas formiguinhas até que elas se encontrem novamente. Então $d_A + d_B = \ell$ e $\frac{d_A}{d_B} = \frac{3}{2}$. A segunda expressão nos dá $d_A = \frac{3}{2}d_B$; substituindo na primeira temos $d_B + \frac{3}{2}d_B = \frac{5}{2}d_B = \ell$, donde $d_B = \frac{2}{5}\ell$.

Isto quer dizer que B vai encontrar A, a partir do ponto P_1 , cada vez que percorrer uma distância de $\frac{2}{5}\ell$. Podemos agora desenhar os pontos em que elas se encontram; além de P_1 , eles são (em ordem) P_2 , P_3 , P_4 e P_5 , como na figura (estes pontos são vértices de um pentágono regular inscrito na circunferência). Notamos que após o encontro em P_5 as formiguinhas se encontram novamente em P_1 , ou seja, não há mais outros pontos de encontro.

QUESTÃO 11 ALTERNATIVA B

Para achar a soma das áreas dos triângulos, basta calcular a área do paralelogramo ABCD e subtrair as áreas dos trapézios ABFE e CDFE. Seja h a altura do trapézio ABFE; sua área é então $\frac{AB+EF}{2}h=3h\,\mathrm{cm}^2$. Como a altura do paralelogramo ABCD é 4 cm, a altura do trapézio CDFE é 4-h e sua área é $\frac{CD+EF}{2}(4-h)=12-3h\,\mathrm{cm}^2$. A área do paralelogramo ABCD é 16 cm²; a soma das áreas dos triângulos é então $16-(3h+12-3h)=4\,\mathrm{cm}^2$.





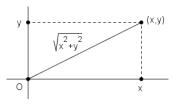
QUESTÃO 12 ALTERNATIVA A

Seja x o lado do quadrado. A área de R é então $1 \times (1-x) = 1-x$, a área de Q é x^2 e a área de S é $x(1-x) = x-x^2$. Como as áreas de R e Q são iguais, temos $x^2 = 1-x$. A raiz positiva desta equação é $x = \frac{\sqrt{5}-1}{2}$, e logo a área de S é

$$x-x^2 = x-(1-x) = 2x-1 = 2\frac{\sqrt{5}-1}{2}-1 = \sqrt{5}-2 \text{ m}^2.$$

QUESTÃO 13 ALTERNATIVA C

Coloquemos a origem de coordenadas no ponto O. O teorema de Pitágoras mostra que a distância de um ponto (x,y) à origem de coordenadas é $\sqrt{x^2+y^2}$; logo, para que (x,y) esteja na região delimitada pelas circunferências de raios 4 e 5, devemos ter $16 = 4^2 \le x^2 + y^2 \le 5^2 = 25$. Observamos também que se (x,y) está pesta região, o mesmo se pode dizer todos os pontos da forma (+x+y) e (+y+y)



nesta região, o mesmo se pode dizer todos os pontos da forma $(\pm x, \pm y)$ e $(\pm y, \pm x)$. Assim, podemos restringir nossa análise a pontos (x,y) com $x,y \ge 0$ e $x \le y$.

Como $16 \le x^2 + y^2 \le 25$, devemos ter $0 \le x, y \le 5$, e estamos interessados apenas em valores inteiros de x e y. Procedemos agora por listagem direta, e obtemos a tabela a seguir.

pontos (x,y) com $x,y \ge 0$, $x \le y$ e $16 \le x^2 + y^2 \le 25$	pontos da forma $(\pm x, \pm y)$ e $(\pm y, \pm x)$	número de pontos
(0,4)	$(0,\pm 4), (\pm 4,0)$	4
(0,5)	$(0,\pm 5)$, $(\pm 5,0)$	4
(1,4)	$(\pm 1, \pm 4)$, $(\pm 4, \pm 1)$	8
(2,4)	$(\pm 2 \pm 4)$, $(\pm 4, \pm 2)$	8
(3,3)	(±3,±3)	4
(3,4)	$(\pm 3, \pm 4)$, $(\pm 4, \pm 3)$	8
	Total	36

54 cm

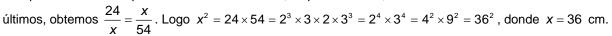
QUESTÃO 14 ALTERNATIVA C

Vamos denotar as hipotenusas dos triângulos retângulos que aparecem na figura por a, b, x, d e c, como na figura; nosso objetivo é achar x = AD.

Os seis triângulos retângulos são semelhantes, pois têm em comum o ângulo de vértice A. Logo

$$\frac{24}{a} = \frac{a}{b} = \frac{b}{x} = \frac{x}{c} = \frac{c}{d} = \frac{d}{54}$$

Multiplicando os três primeiros termos acima e, separadamente, os três



Alternativamente, seja $\lambda = \frac{24}{a}$. Multiplicando os seis termos da sequência de igualdades acima, obtemos

$$\lambda^6 = \frac{24}{54} = \frac{4}{9} = \left(\frac{2}{3}\right)^2, \text{ donde } \lambda^3 = \frac{2}{3}. \text{ Por outro lado, } \lambda^3 = \frac{24}{a} \times \frac{a}{b} \times \frac{b}{x} = \frac{24}{x} \text{ e obtemos } \frac{24}{x} = \frac{2}{3}, \text{ donde } x = 36 \text{ cm.}$$

QUESTÃO 15 ALTERNATIVA D

Vamos denotar por P e V canetas pretas e vermelhas, respectivamente. Como o número de P e V que Juliana tem são iguais, as probabilidades de ela escolher uma P ou uma V ao acaso são ambas iguais a $\frac{1}{2}$. Podemos então fazer a seguinte tabela:

caneta colocada na bolsa ao acaso	probabilidade	canetas na bolsa no dia seguinte	probabilidade de tirar uma P
Р	$\frac{1}{2}$	P, P	1
V	$\frac{1}{2}$	V, P	$\frac{1}{2}$

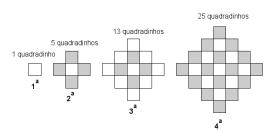
Como os eventos (P,P) e (P,V) são disjuntos, a probabilidade de Juliana tirar uma caneta preta da bolsa é

$$\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4}$$
.

QUESTÃO 16 ALTERNATIVA D

Vamos contar quantos quadradinhos brancos e sombreados aparecem em cada figura.

figura	brancos	sombreados	total
1 ^a	1 = 1 ²	$0 = 0^2$	$1^2 + 0^2$
2ª	1 = 1 ²	$4 = 2^2$	2 ² +1 ²
3 ^a	9 = 3 ²	$4 = 2^2$	3 ² + 2 ²
4 ^a	9 = 32	$16 = 4^2$	$4^2 + 3^2$



Em geral, vemos que a *n*-ésima figura terá $n^2 + (n-1)^2$

quadradinhos. Nosso problema se resume então a achar o menor inteiro positivo n tal que $n^2 + (n-1)^2 \ge 2009$. Podemos fazer isto analisando o sinal do polinômio $n^2 + (n-1)^2 - 2009 = 2n^2 - 2n - 2008$, mas é mais rápido proceder por aproximações, como segue.

Como $n^2 > (n-1)^2$ para $n \ge 1$, devemos ter $2n^2 > 2009$, ou seja, $n^2 > 1005$; segue que n > 31. Como $32^2 + 31^2 = 1985$, o valor n = 32 está descartado; por outro lado, para n = 33 temos $33^2 + 32^2 = 2113$.

QUESTÃO 17 ALTERNATIVA E

O pentágono tem 5 lados e 5 diagonais, num total de 10 segmentos. Uma figura consiste de 2 destes segmentos, e escolhas distintas de dois segmentos correspondem a figuras distintas. Segue que o número de figuras distintas

$$\acute{e} \begin{pmatrix} 10 \\ 2 \end{pmatrix} = \frac{10!}{2!8!} = 45.$$

Outra maneira de resolver esta questão é listar, organizadamente, as figuras possíveis. Na figura abaixo mostramos as 9 figuras diferentes que contém o vértice superior do pentágono. Observamos que nenhuma destas figuras pode ser obtida a partir de outra através de rotações do pentágono.

Cada uma destas figuras dá origem, através de rotações do pentágono, a outras 4 figuras diferentes, como ilustramos abaixo.

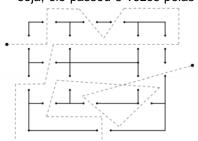
Seque que o número de figuras diferentes que podemos fazer com dois segmentos é $9 \times 5 = 45$.

QUESTÃO 18 ALTERNATIVA B

Na figura marcamos, ao lado das letras que identificam as salas, o número de portas de cada uma.

Vamos supor que a porta pela qual o Joãozinho passou duas vezes pertence a uma sala com 4 portas. Então ele passou uma única vez pelas 3 portas restantes, ou seja, ele passou 5 vezes pelas portas desta sala. Logo ele entrou, saiu, entrou, saiu e

entrou na sala, ou seja, ficou dentro dela. Esta conclusão é contrária ao enunciado, que diz que ele F(4) foi embora. Logo o Joãozinho passou uma única vez



por todas as portas das salas com 4 portas. Assim, a porta pela qual ele passou duas vezes é aquela que não pertence a nenhuma sala com 4 portas, ou seja, é a porta que liga as salas C e E.

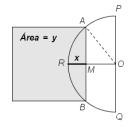
Coloca-se, é claro, a questão da existência de um trajeto que satisfaca as condições do enunciado. Para isto, providenciamos a figura ao lado; nela, as bolinhas marcam o início e o término do trajeto.

QUESTÃO 19 ALTERNATIVA C

Como o diâmetro do círculo é 2, seu raio é 1. Aplicando o teorema de Pitágoras ao triângulo OMA, obtemos $AM^2 = 1^2 - (1 - x)^2 = 2x - x^2$. Esta é a área de um quadrado de

lado $AM = \frac{AB}{2}$: a área do quadrado de lado AB é então $y = 4(2x - x^2) = 8x - 4x^2$.

Notamos que como x varia em OR, temos $0 \le x \le 1$; para x = 0 temos y = 0 e para x = 1 temos y = 4. O gráfico de $y = 8x - 4x^2$ é uma parábola com concavidade para baixo, pois o coeficiente de x^2 é negativo; este gráfico está representado na alternativa C).



QUESTÃO 20 ALTERNATIVA E

Vamos imaginar que o torneio acabou. Para os 56 times que foram eliminados após perder 2 partidas cada um, contamos $56 \times 2 = 112$ derrotas. Como o campeão perdeu uma vez, o número total de derrotas foi 112 + 1 = 113. Além disso, como não houve empates, em cada partida um time ganhou e o outro perdeu: logo, o número total de derrotas é igual ao número total de partidas.