

1. (alternativa C)

$$99 + 999 + 9999 = (100 - 1) + (1000 - 1) + (10000 - 1) = 11100 - 3 = 11097.$$

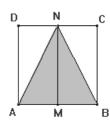
2. (alternativa D)

A balança mostra que o peso de Aninha com um mês de idade é de 4,1 quilos, ou seja, 4100 gramas. Aninha nasceu com 3250 gramas, logo ela engordou 4100 - 3250 = 850 gramas em seu primeiro mês de vida.

Comentário: usamos aqui a palavra "peso" em lugar de "massa" devido a seu emprego coloquial.

3. (alternativa E)

Na opção I o quadrado está dividido em quatro triângulos iguais, de modo que a área da região sombreada é a metade da área do quadrado. Na opção II, a diagonal divide o quadrado em dois triângulos iguais, e outra vez a área da região sombreada é metade da área do quadrado. Na opção III o triângulo sombreado tem área menor do que o triângulo sombreado da opção II, ou seja, menor que metade da área do quadrado. Na opção IV, observamos na figura ao lado que a perpendicular MN ao segmento AB divide o quadrado nos pares de triângulos



iguais *AMN*, *ADN* e *BMN*, *BCN*; segue mais uma vez que a área da região sombreada é metade da área do quadrado. Finalmente, a área do triângulo sombreado na opção V é maior do que a área do triângulo sombreado da opção II, ou seja, é maior do que metade da área do quadrado.

Comentário: observamos que na opção IV o ponto N não precisa ser o ponto médio do lado CD. De fato, o argumento usado acima para analisar essa opção não depende da posição de N ao longo de CD.

4. (alternativa A)

Solução 1: Na figura vê-se que V está abaixo de R, que está abaixo de S, que está abaixo de U, que está abaixo de T. Logo a ordem em que os discos foram colocados sobre a mesa é V, R, S, U, T. Solução 2: T está acima de U, que por sua vez está acima de S e V. Como R está abaixo de S e acima de V vê-se que S foi colocado na mesa depois de V e R, e chegamos à mesma solução anterior.

5. (alternativa C)

Temos
$$9\,870\times1,\!54 = 987\times10\times\frac{154}{100} = \frac{987\times154}{10} = \frac{15\,1998}{10} = 15\,199,\!8\;.$$

6. (alternativa B)

Solução 1: Se Pedro não tivesse trocado os preços, a quantia que ele teria recebido pela venda de 100 quilos de cenoura e 120 quilos de tomate seria $100 \times 1 + 120 \times 1,10 = 100 + 132 = 232$ reais. A quantia que ele recebeu, de fato, foi de $100 \times 1,10 + 120 \times 1 = 110 + 120 = 230$ reais. Logo, por causa de sua distração, ele perdeu 232 - 230 = 2 reais.

Solução 2: Como a diferença dos preços dos dois produtos é R\$ 0,10 por quilo, ao trocar os preços Pedro ganhou $100 \times 0,10 = 10$ reais na venda das cenouras e perdeu $120 \times 0,10 = 12$ reais na venda dos tomates. Logo, no final, ele perdeu 2 reais.

7. (alternativa E)

Os casais 1 e 2 podem se sentar de duas maneiras distintas:

No primeiro caso, as quatro pessoas podem se sentar em 4 ordens:

No segundo caso, obtemos da mesma maneira outras 4 ordens. Logo os casais podem se sentar no banco de 4+4=8 maneiras distintas.

8. (alternativa D)

Um quadrado de lado ℓ tem área ℓ^2 . Os lados dos quadrados de áreas 25 cm^2 e 9 cm^2 medem respectivamente, 5 cm e 3 cm. Segue que o lado do quadrado menor mede 5-3=2 cm. O contorno da figura é formado por 3 lados de 5 cm, 2 lados de 3 cm, 2 lados de 2 cm e um segmento que é a diferença entre um lado de 3 cm e outro de 2 cm, donde o perímetro é $3\times 5 + 2\times 3 + 2\times 2 + (3-2) = 26$ cm.

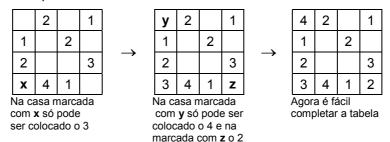
9. (alternativa D)

Para encontrar a expressão que a professora escreveu no quadro negro, precisamos destrocar tudo o que Carlos trocou:

Logo o resultado da expressão que professora escreveu no quadro negro é $(15 \div 3) + (35 \times 2) - 23 = 5 + 70 - 23 = 52$.

10. (alternativa D)

Uma maneira de iniciar o preenchimento da tabela é



O resultado final é

4	2	3	1
1	3	2	4
2	1	4	3
3	4	1	2

e a soma procurada é 4+3+4+2=13.

11. (alternativa C)

Como o resultado da multiplicação é um número de três algarismos, então \square só pode representar 1, 2 ou 3. Logo não "vai 1" quando multiplicamos \square (multiplicador) por \square (algarismo das unidades do multiplicando) e assim $\square \times 2 = 6$, donde $\square = 3$ e $\triangle = 9$. Portanto $\square \times \triangle = 27$.

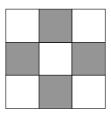
12. (alternativa A)

Para montar o quadrado maior, a peça de um quadradinho não poderá ocupar nenhuma das quatro casas sombreadas na figura ao lado. Logo César só pode ter escrito nessa peça os seguintes números: 12, 25, 14, 20 ou 16.

Examinemos agora cada uma das opções:

- (A) todos esses números são maiores que 9
- (B) nenhum desses números é menor que 11
- (C) nenhum desses números é maior que 27
- (D) nenhum desses números é par menor que 10
- (E) nenhum desses números está entre 21 e 24

donde temos a opção correta.



13. (alternativa A)

As informações do gráfico são dadas nas três primeiras colunas da tabela abaixo:

Cidade	População em 1990	População em 2000	Aumento da população	Aumento proporcional da população
I	30	50	50 - 30 = 20	$\frac{20}{30}$
II	60	50	decresceu	não teve
III	70	70	70 - 70 = 0	0
IV	100	150	150 – 100 = 50	50 100
V	120	130	130 – 120 = 10	10 120

Como $\frac{20}{30}$ é maior que $\frac{50}{100}$ e $\frac{10}{120}$. Concluímos que o maior aumento percentual de população entre 1990 e 2000 ocorreu na cidade I.

Na forma percentual, $\frac{20}{30} \approx 67\%$, $\frac{50}{100} = 50\%$ e $\frac{10}{120} \approx 8,3\%$.

14. (alternativa D)

A região sombreada é formada pelo quadrado central, quatro retângulos cada um com metade da área de um quadrado e quatro triângulos cada um com um oitavo da área de um quadrado. Logo a área da região sombreada é $1+4\times\frac{1}{2}+4\times\frac{1}{8}=3,5$ cm².

15. (alternativa D)

Inicialmente o fabricante cobrava R\$ 20,00 por quilo e passou, com o aumento de preço, a cobrar R\$ 25,00 por quilo. Logo o aumento do preço foi de R\$ 5,00 por quilo e o aumento percentual de $\frac{5}{20} = 25\%$.

16. (alternativa D)

Solução 1: Cada vez que se passa uma bola branca da caixa quadrada para a redonda, tanto o número de bolas brancas quanto o total de bolas na caixa quadrada diminui de 1; já na caixa redonda, tanto o número de bolas brancas quanto o total de bolas aumenta de 1.

Número de bolas brancas passadas da caixa quadrada para a redonda		0	1	2	3	4
Caixa quadrada:	bolas brancas total de bolas	$\frac{4}{6}$	3 5	2 4	$\frac{1}{3}$	$\frac{0}{2}$
Coive redender	bolas brancas	0	1	2	3	4
Caixa reuoriua.	total de bolas	6	7	8	9	10

Como $\frac{1}{3} = \frac{3}{9}$, Paula terá que passar 3 bolas brancas da caixa quadrada para a redonda.

Solução 2: Seja x o número de bolas brancas que Paula deve transferir da caixa quadrada para a caixa redonda. Então

$$\frac{4-x}{6-x}=\frac{x}{6+x}$$

e resolvendo esta equação obtemos x = 3.

17. (alternativa C)

Ao montar o cubo, a face branca e a face cinza ficam opostas; logo as alternativas (A) e (B) estão excluídas. As alternativas (D) e (E) estão excluídas pois no cubo não podem aparecer um retângulo branco e outro cinza com um lado menor em comum.

18. (alternativa D)

Como queremos obter a soma 54, devemos colocar sinais de adição entre todos os algarismos a partir do 5, isto é, $1?2?3?4?5 + \underbrace{6+7+8+9}_{30} = 54$. Logo precisamos que 1?2?3?4?5 = 24.

Com o mesmo argumento usado anteriormente, vemos que isso só pode ser feito como 12+3+4+5. Logo 12+3+4+5+6+7+8+9=54 é a expressão procurada, para a qual necessitamos de 7 sinais de adição.

19. (alternativa C)

20. (alternativa E)

ou

Como $950 + 550 = 1500 = 2 \times 750$, uma solução é café na xícara I, suco na II, café na III, leite na IV e na V. Nessa solução temos apenas uma xícara com suco.

Será que existe outra solução com suco em duas xícaras? Se sim, teríamos duas possibilidades para a quantidade de suco:

- i. 475+ 325= 800ml (suco nas duas xícaras menores) Nesse caso teríamos 1600 ml de café o que é impossível obter com 1 ou 2 xícaras dentre as I, II e III
- ii. **maior do que 800 ml**; nesse caso a quantidade de café seria maior que $800 \times 2 = 1600$ ml, o que só pode ocorrer com café nas xícaras I e II, que somam 950 + 750 = 1700 ml. Neste caso a quantidade de suco seria 850 ml, o que não pode ocorrer com as demais xícaras.

Logo há suco em apenas uma xícara, donde a única solução possível é a dada acima.