

Somando novos talentos para o Brasil

Nível

3

Cole aqui a etiqueta com os dados do aluno.

Ensino Médio

2ª FASE - 18 de novembro de 2006

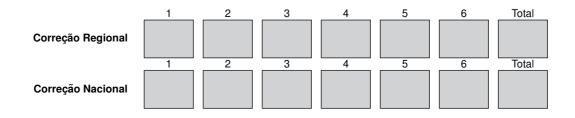
Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação que contamos agora com sua participação na 2ª Fase. Desejamos que você faça uma boa prova e que ela seja um estímulo para aumentar seu gosto e alegria em estudar Matemática.

Um abraço da equipe da OBMEP!

Ministério da Ciência e Tecnologia

Ministério da Educação

INSTRUÇÕES


- Verifique se os dados da etiqueta acima estão corretos. Escreva seus dados (nome e endereço completos) e assine no local indicado. Assine também a lista de presença.
- 2. A prova pode ser feita a lápis ou a caneta.
- A duração da prova é de 3 horas. Você só poderá deixar a sala de prova 25 minutos após o início da prova. Ao terminar a prova, entregue-a ao aplicador.
- 4. A solução de cada questão deve ser escrita na página reservada para ela, de maneira organizada e legível. Evite escrever soluções na folha de rascunho.
- Na correção serão considerados todos os raciocínios que você apresentar. Tente resolver o maior número possível de itens de todas as questões.
- 6. Respostas sem justificativas não serão consideradas na correção.
- Não é permitido o uso de instrumentos de desenho, calculadoras ou qualquer fonte de consulta.
- Não é permitido comunicar-se com outras pessoas além do aplicador.
- 9. Não escreva nos espaços sombreados.

"Não quero ter a terrível limitação de quem vive apenas do que é possível fazer sentido. Eu não: quero é uma verdade inventada."

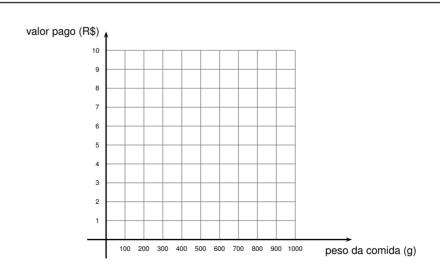
chame hispardo,

Os nomes usados nesta prova são de personagens da obra da grande escritora brasileira Clarice Lispector.

Nor	ne d	com	plet	o do	alı	ıno																		
Enc	lere	ço c	om	plet	o do	o alı	ino																	
Cor	nple	mer	ito																CEP					
Cid	ade		•			•												_			•		ī	JF
							•								•	DD	D		Telefo	one (opcio	nal)		
As	sin	atu	ra																					

Somando novos talentos para o Brasil

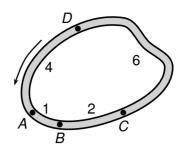
(1) Raimundo e Macabéa foram a um restaurante que cobra R\$ 1,50 por cada 100 gramas de comida para aqueles que comem até 600 gramas e R\$ 1,00 por cada 100 gramas para aqueles que comem mais de 600 gramas.


- (a) Quanto paga quem come 350 gramas? E quem come 720 gramas?
- (b) Raimundo consumiu 250 gramas mais que Macabéa, mas ambos pagaram a mesma quantia. Quanto cada um deles pagou?
- (c) Desenhe o gráfico que representa o valor a ser pago em função do peso da comida. Marque nesse gráfico os pontos que representam a situação do item (b).

(a)

(b)

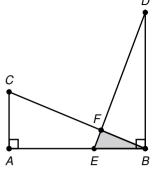
(c)



TOTAL

(2) A figura representa o traçado de uma pista de corrida. Os postos A, B, C e D são usados para partidas e chegadas de todas as corridas. As distâncias entre postos vizinhos, em quilômetros, estão indicadas na figura e as corridas são realizadas no sentido indicado pela flecha.

Por exemplo, uma corrida de 17 km pode ser realizada com partida em D e chegada em A.


- (a) Quais são os postos de partida e chegada de uma corrida de 14 quilômetros?
- (b) E para uma corrida de 100 quilômetros, quais são esses postos?
- (c) Mostre que é possível realizar corridas com extensão igual a qualquer número inteiro de quilômetros.

(a)				
(b)				

(c)

- (3) Na figura, os triângulos ABC e BDE são congruentes e os ângulos $B\widehat{A}C$ e $D\widehat{B}E$ são retos.
- (a) Ache a razão entre a área do triângulo BDF e a área do quadrilátero AEFC.
- (b) Determine a medida do ângulo $B\widehat{F}E$.
- (c) Sabendo que AB = 12 e AC = 5, calcule a área do triângulo EFB.

(a)

(b)

(c)

TOTAL

(4)	Oa	uadrado d	da figura	аıé	chamado	especial	poraue

- 1. ele está dividido em 16 quadrados iguais;
- 2. em cada linha e em cada coluna aparecem os algarismos 1, 2, 3 e 4;
- 3. em cada um dos quadrados A, B, C e D (como na figura II) aparecem os algarismos 1, 2, 3 e 4.

4	2	1	3				
1	3	2	4				
3	1	4	2				
2	4	3	1				
I							

Α	В
С	D
I	I

(a) Complete o quadrado abaixo de modo que ele se torne especial.

	2		
3	4		
		1	
			2

(b) É possível completar o quadrado abaixo de modo a obter um quadrado especial? Por quê?

1	2	
3	4	
		2

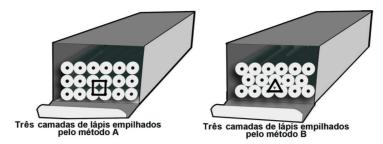
(c) Exiba todas as maneiras de completar o quadrado abaixo de modo a obter um quadrado especial.

1	2	
3	4	
		1

(d) Quantos quadrados especiais existem?

(5)

- (a) Severina escreveu um número inteiro positivo em cada lado de um quadrado. Em seguida, escreveu em cada vértice o produto dos números escritos nos lados que se encontram nesse vértice. A soma dos números escritos em dois lados opostos é 60 e a soma dos números escritos nos outros lados é 85. Qual é a soma dos números escritos nos vértices?
- (b) Catarina, por sua vez, escreveu em cada face de um cubo um número inteiro positivo. Em seguida, escreveu em cada vértice o produto dos números escritos nas três faces que se encontram nesse vértice. Se a soma dos números escritos nos vértices é 105, qual é a soma dos números escritos nas faces?


(a)

(b)

TOTAL

(6) Rodrigo coloca lápis cilíndricos de 15 cm de comprimento e 1 cm de diâmetro em caixas na forma de bloco retangular com base de dimensões 6 cm por 15 cm. Ele empilha os lápis nas caixas usando dois métodos diferentes, ilustrados a seguir:

No método A, os centros dos círculos formam quadrados e, no método B, triângulos equiláteros, como na figura.

- (a) Mostre que cada camada de lápis empilhados pelo método B, exceto a primeira, acrescenta $\frac{\sqrt{3}}{2}$ cm à altura da pilha. Para resolver os próximos itens, use a aproximação 0,87 para $\frac{\sqrt{3}}{2}$.
- (b) Rodrigo quer colocar 90 lápis em uma caixa. Qual a menor altura que a caixa deve ter se ele usar o método A? E se ele usar o método B?
- (c) Olímpico mostrou a Rodrigo como empacotar 90 lápis em uma caixa de altura 14,5 cm. Como isso pode ser feito?

(a)		
(b)		

(c)

